

Journal of Organometallic Chemistry 552 (1998) 285-292



# New chelating silylamido ligands: syntheses and X-ray crystal structures of lithium and magnesium derivatives of [*t*-Bu-HN-SiMe<sub>2</sub>-o-C<sub>6</sub>H<sub>4</sub>-X] (X = OMe, NMe<sub>2</sub>, CH<sub>2</sub>NMe<sub>2</sub>, CF<sub>3</sub>)

Bernd Goldfuss, Paul von Ragué Schleyer \*, Sandra Handschuh, Frank Hampel

Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestrasse 42, D-91054 Erlangen, Germany

Received 23 July 1997

#### Abstract

New chelating silylamido ligands with four 'directing metalation donor groups' (DMGs), OMe,  $NMe_2$ ,  $CH_2NMe_2$  and  $CF_3$  on aryl moieties have been synthesized. The X-ray crystal structures of the dimeric lithium derivatives [ $\{t$ -BuN–SiMe<sub>2</sub>–o-( $C_6H_4$ )–DMG}Li]<sub>2</sub> (1)<sub>2</sub> (OMe), (2)<sub>2</sub> (NMe<sub>2</sub>), (3)<sub>2</sub> (CH<sub>2</sub>NMe<sub>2</sub>) and (4)<sub>2</sub> (CF<sub>3</sub>) reveal Li–DMG contacts in all four cases and decreased lone pair-aryl conjugation for OMe and NMe<sub>2</sub>. In plane distortions are apparent for the alkyl and silyl substituents of the central (LiN)<sub>2</sub> rings in (1)<sub>2</sub>–(4)<sub>2</sub>; these give rise to short 'agostic' Li ··· H<sub>3</sub>C– interactions with the *t*-Bu moieties. While the OMe, NMe<sub>2</sub> and CH<sub>2</sub>NMe<sub>2</sub> groups exhibit 'side on' lithium–heteroatom contacts, lithium coordinates to a CF<sub>3</sub> fluorine atom significantly more 'end on'. The ability of the chelating silylamido ligands to coordinate metal ions other than lithium is demonstrated by the X-ray crystal structures of the magnesium complexes [ $\{t$ -BuN–SiMe<sub>2</sub>–o-( $C_6H_4$ )–OMe}<sub>2</sub>Mg](9) and [ $\{t$ -BuN–SiMe<sub>2</sub>–o-( $C_6H_4$ )–CH<sub>2</sub>NMe<sub>2</sub>}(OMe)<sub>2</sub>Mg<sub>2</sub>](10). © 1998 Elsevier Science S.A.

Keywords: Lithium; Magnesium; Amides; X-ray crystal analysis; Ab initio computations

# 1. Introduction

Polar metal amides are widely used in organic and inorganic chemistry, e.g., as non-nucleophilic bases in deprotonation reactions [1–4], hydride transfer reagents [5], synthetic building blocks [6], and as auxiliary ligands [7]. Consequently, molecular [8–13] and electronic structures of lithium organics [11,14] have been investigated extensively [15–18]. An easily variable donor group can be very useful in ligand design, e.g., to modify the strength of metal–ligand interaction [8–13,19].

We have now elucidated the molecular structures of the lithium (1-4) and some of the magnesium complexes of chelating silylamido ligands with four different, aryl-based 'directed metalation functional groups' (DMGs) [20] as variable donor functions.

First discovered independently by Gilman and Bebb [21] and by Wittig and Fuhrmann [22], DMG's play a crucial role in *ortho*-selectivity due to the acceleration

\* Corresponding author.

of aromatic metalation reactions [23–25]. While it was first suggested that DMGs influence the ground states of the precursor complexes [26] ('complex-induced proximity effects' [27]), it was demonstrated later that DMGs reduce the activation barriers of the *ortho*-metalations by complexation of the metals in the transition structures ('kinetically-enhanced metallation') [28–33].

2. Syntheses and X-ray crystal structures of  $[{t-BuN-SiMe_2-o-C_6H_4-X}Li]_2$  (X = OMe, NMe<sub>2</sub>, CH<sub>2</sub>NMe<sub>2</sub>, CF<sub>3</sub>)

The silyl amides 1-4 (M = Li) were synthesized by coupling of DMG-functionalized and *ortho*-lithiated benzene derivatives [34,35] with dichlorodimethylsilane and *t*-butyl amine (yielding chelating silyl amines, Scheme 1) as well as subsequent lithiation of the NH functions.

All the lithium amides 1-4 (M = Li), which differ only in their DMGs, were crystallized from nonpolar hexane solutions without co-solvent since we wished to

<sup>0022-328</sup>X /98 / \$19.00 © 1998 Elsevier Science S.A. All rights reserved.



Scheme 1. Synthesis of DMG (OMe, NMe2, CH2NMe2, CF3) functionalized chelating silylamines.



Scheme 2. (a) Transition structure of *ortho*-metalation reactions. RM = metalating reagent, e.g., BuLi. (b) Silylamide as model for the DMG coordination in the transition structure of *ortho*-metalation reactions.

elucidate the effects of DMG–lithium coordination in the absence of donor solvent interactions. The chelating silyl amides 1-4 are similar to the transition structures of *ortho*-metalation reactions (Scheme 2) [28–33]. Hence, 1-4 may serve as models for the individual metal–DMG coordination in the transition structures of *ortho*-metalations [20,23–25,28–35].

The single crystal X-ray analyses reveal dimeric aggregates (Figs. 1–4) with central  $(\text{LiN})_2$  rings for all the species  $(1)_2-(4)_2$  [36].

The Li–DMG interactions are apparent in all four structures  $(1)_2-(4)_2$ : note the short Li–(O, N, F) distances, ranging from 1.95 (O) to 2.19 (F) Å (Table 1). The oxygen atoms in  $(1)_2$  exhibit pyramidal environments (Li, Me, C<sub>aryl</sub> angle sum = 345.6°, Fig. 1). Due to the Li–O coordination, the Me(O) group in  $(1)_2$  is not in the plane of the aryl moiety: the Me–O–(C–CH)<sub>aryl</sub> dihedral angle is 10.2° (Fig. 1) and hence, the



Fig. 1. The X-ray crystal structure of  $[{t-BuN-SiMe_2-o-(C_6H_4)-OMe}Li]_2$  (1)<sub>2</sub>. Hydrogen atoms are omitted for clarity. Distances and angles are given in Tables 1–4.



Fig. 2. The X-ray crystal structure of  $[{t-BuN-SiMe_2-o-(C_6H_4)-NMe_2}Li]_2$  (2)<sub>2</sub>. Hydrogen atoms are omitted for clarity. Distances and angles are given in Tables 1–4.



Fig. 3. The X-ray crystal structure of  $[{t-BuN-SiMe_2-o-(C_6H_4)-CH_2-NMe_2}Li]_2$  (3)<sub>2</sub>. Hydrogen atoms are omitted for clarity. Distances and angles are given in Tables 1–4.



Fig. 4. The X-ray crystal structure of  $[{t-BuN-SiMe_2-o-(C_6H_4)-CF_3}Li]_2$  (4)<sub>2</sub>. Hydrogen atoms are omitted for clarity. Distances and angles are given in Tables 1–4.

Table 1

|                                                 | $(1)_2$ (O atom) | $(2)_2$ (N atom) | $(3)_{2}^{a}$ (N atom) | $(4)_2$ (F atom) |  |
|-------------------------------------------------|------------------|------------------|------------------------|------------------|--|
| Li <sub>1</sub> -DMG                            | 1.952(5)         | 2.050(12)        | 2.153(9)               | 2.19(2)          |  |
| Li <sub>2</sub> –DMG                            | 1.958(5)         | 2.096(13)        | 2.153(9)               | 2.28(2)          |  |
| $\phi$ (Li–DMG) <sup>b</sup>                    | 1.96 (1.911)     | 2.07 (2.036)     | 2.15 (2.037)           | 2.24 (1.874)     |  |
| DMG-Li <sub>1</sub> -N <sub>1</sub>             | 107.4(2)         | 112.5((5)        | 115.5(4)               | 94.5(7)          |  |
| DMG-Li <sub>2</sub> -N <sub>2</sub>             | 110.6(2)         | 112.2(6)         | 115.5(4)               | 94.1(7)          |  |
| $\phi$ (DMG–Li–N) <sup>b</sup> <sub>small</sub> | 109.0            | 112.3            | 115.5                  | 94.3             |  |
| DMG-Li <sub>1</sub> -N <sub>2</sub>             | 136.9(3)         | 134.2(6)         | 135.2(4)               | 154.8(10)        |  |
| $DMG-Li_2-N_1$                                  | 130.2(3)         | 136.0(7)         | 135.2(4)               | 155.4(9)         |  |
| $\phi$ (DMG–Li–N) <sup>b</sup> <sub>large</sub> | 133.5            | 135.1            | 135.2                  | 155.1            |  |
| Li <sub>1</sub> -DMG-C <sup>c</sup>             | 102.6(3)         | 116.2(5)         | 99.6(4)                | 150.2(7)         |  |
| $Li_1$ -DMG-C <sup>c</sup>                      | 105.9(3)         | 84.5(5)          | 99.6(4)                | 149.0(8)         |  |
| $\dot{\phi}(Li-DMG-C)^{b,c}$                    | 104.3 (108.9)    | 100.4 (102.2)    | 99.6 (101.1)           | 149.6 (114.6)    |  |

The lithium–DMG coordination distances (Å) and angles (°) in the X-ray crystal structures  $(1)_2-(4)_2$  (Scheme 3) and in the computational models **5–8** (in parentheses, Scheme 5)

<sup>a</sup>Crystallographic C<sub>2</sub> symmetry.

<sup>b</sup>Average values.

<sup>c</sup>Scheme 4.

O(p-lp)-aryl conjugation is decreased slightly. <sup>1</sup> Structures of lithium aryls with chelating OMe [37,38] and Ot-Bu <sup>2</sup> functions have been reported.

Lithium coordination prevents effective N(lp)-aryl conjugation in  $(2)_2$ , even more significantly than in  $(1)_2$ : the Li- $N(Me_2)-(C-CH)_{aryl}$  torsion angle in  $(2)_2$  is 134° and the  $(Me_2)N-Li$  axis distorts 46° out of the  $N-(C-C)_{aryl}$  plane (Fig. 2) <sup>3</sup>. This competition between lithium coordination and aryl conjugation of the N lone pair was suggested to be responsible for the poor *ortho*-direction quality of the NMe<sub>2</sub> group [24]. The pyramidal NAr(Me<sub>2</sub>) environment in  $(2)_2$  (average angle sum at N = 329.8°) is clearly apparent (Fig. 3). Structures of 1-lithium aryls with NMe [40,41] groups have been described.

Despite the greater conformational flexibility of the  $CH_2-NMe_2$  group, the N(DMG)-Li<sub>(1,2)</sub>-N<sub>(1,2)</sub> angles in (**3**)<sub>2</sub> differ not strongly from those in (**1**)<sub>2</sub> and (**2**)<sub>2</sub> (Table 1): small (115.5°) and large (135.2°) DMG-Li<sub>(1,2)</sub>-N<sub>(1,2)</sub> angles (Scheme 3 left) are clearly apparent in (**3**)<sub>2</sub>. The environment of the DMG nitrogen atom in (**3**)<sub>2</sub> is slightly more pyramidal (angle sum = 326.9°) than for N(DMG) in (**2**)<sub>2</sub> (329.8°). X-ray structures of lithium aryls with CH<sub>2</sub>NMe<sub>2</sub> [42] groups are known.

As described by Roberts and Curtin [26], the  $CF_3$  group was one of the first DMGs applied in *ortho*-metalations. Although the  $CF_3$  group is suggested to have mostly inductive rather than coordination effects on the metalation reagent in *ortho*-metalation reactions, [24] the CF<sub>3</sub> · · · Li contact is clearly apparent in (4)<sub>2</sub> (Fig. 4). The F-Li<sub>(1,2)</sub>-N<sub>(1,2)</sub> coordination arrangement of the CF<sub>3</sub> group in (4)<sub>2</sub> (Fig. 4) is much more asymmetric



Scheme 3. The structures of  $(1)_2$  (DMG = OMe, Fig. 1),  $(2)_2$  (DMG = NMe<sub>2</sub>, Fig. 2),  $(3)_2$  (DMG = CH<sub>2</sub>NMe<sub>2</sub>, Fig. 3) and  $(4)_2$  (DMG = CF<sub>3</sub>, Fig. 4). The asymmetric DMG coordinations of lithiums in central (LiN)<sub>2</sub> rings (left) and 'in plane' distorsions, resulting in 'agostic' Li · · · H<sub>3</sub>C(*t*-Bu) interactions (right) are shown.

Table 2 The (LiN)2 bond distances (Å) and angles (°) of the X-ray crystal structures  $(1)_2$  to  $(4)_2$  (Scheme 3 left)

|                                 | <b>(1)</b> <sub>2</sub> | <b>(2)</b> <sub>2</sub> | $(3)_2^a$ | <b>(4)</b> <sub>2</sub> |
|---------------------------------|-------------------------|-------------------------|-----------|-------------------------|
| Li <sub>1</sub> -N <sub>1</sub> | 1.993(5)                | 2.064(13)               | 2.052(9)  | 1.97(2)                 |
| $N_1 - Li_2$                    | 1.993(5)                | 2.038(12)               | 2.102(9)  | 1.98(2)                 |
| $Li_2 - N_2$                    | 1.990(5)                | 2.046(12)               | 2.052(9)  | 2.00(2)                 |
| $N_2 - Li_1$                    | 2.013(5)                | 2.003(13)               | 2.102(9)  | 1.98(2)                 |
| $Li_1 - N_1 - Li_2$             | 70.7(2)                 | 70.3(5)                 | 70.8(4)   | 70.6(7)                 |
| $N_1 - Li_2 - N_2$              | 109.9(2)                | 108.7(5)                | 109.2(4)  | 109.3(8)                |
| $Li_2 - N_2 - Li_1$             | 70.4(2)                 | 71.4(5)                 | 70.8(4)   | 70.0(7)                 |
| $N_2 - Li_1 - N_1$              | 109.0(2)                | 109.3(6)                | 109.2(4)  | 110.1(9)                |
| $Li_1 - N_1 - Li_2 - N_2$       | 1.0(2)                  | 4.3(5)                  | 1.3(4)    | 1.7(8)                  |
| $N_1 - Li_2 N_2 - Li_1$         | -1.0(2)                 | -4.4(5)                 | -1.3(4)   | -1.7(8)                 |
| $Li_2 - N_2 - Li_1 - N_1$       | 1.0(2)                  | 4.3(5)                  | 1.3(4)    | 1.7(8)                  |
| $N_2 - Li_1 - N_1 - Li_2$       | -1.0(2)                 | -4.4(5)                 | -1.3(4)   | -1.7(8)                 |
|                                 |                         |                         |           |                         |

<sup>a</sup>Crystallographic C<sub>2</sub> symmetry.

<sup>&</sup>lt;sup>1</sup> For optimal O(lp)-aryl conjugation, the Me–O–(C–CH)<sub>aryl</sub> angle should be  $0^{\circ}$ .

<sup>&</sup>lt;sup>2</sup> See Ref. [39] for the crystal structure of 2,6-di-*t*-butoxyphenyllithium. See Ref. [40] for the crystal structure of 2-dimethylamino-6*t*-butoxyphenyllithium.

<sup>&</sup>lt;sup>3</sup> For optimal N(lp)-aryl conjugation, the  $(Me_2)N-Li$  axis should be perpendicular to the aryl plane, e.g., Li–N(Me<sub>2</sub>)–(C–CH)<sub>aryl</sub> = 90° (180° – 134° = 46°).



Scheme 4. 'Side on' and 'end on' Li  $\cdots$  DMG coordinations in the X-ray crystal structures  $(1)_2, (2)_2, (3)_2$  and  $(4)_2$  (Table 1).

(smallest 94.3° and largest 155.1°  $F-Li_{(1,2)}-N_{(1,2)}$  angles, Table 1) than the DMG- $Li_{(1,2)}-N_{(1,2)}$  coordinations in (1)<sub>2</sub>, (2)<sub>2</sub> and (3)<sub>2</sub> (Table 1, Scheme 3 left). This results from the pronounced 'end on' lithium contact to the F-C bond (large  $Li_{(1,2)}$ -F-C angle = 149.6°, Table 1), in contrast to the 'side on' Li coordination for DMG = OMe, NMe<sub>2</sub>, CH<sub>2</sub>NMe<sub>2</sub> (small  $Li_{(1,2)}$ -DMG-C angles, Table 1, Scheme 4). While Li  $\cdots$  F contacts are known for organic  $-R_2$ Si-F [43,44] moieties and for inorganic lithium salts, [45] X-ray crystal structures with Li  $\cdots$  FCF<sub>2</sub> arrangements as in (4)<sub>2</sub> have not been reported.

Table 3

Distances (Å) between lithiums  $Li_{1,2}$  and the ring (N) substituents  $C_{1,2}$  and  $Si_{1,2}$  of the X-ray crystal structures (1)<sub>2</sub> to (4)<sub>2</sub> (Scheme 3 right)

|                                                     | <b>(1)</b> <sub>2</sub> | $(2)_2$   | $(3)_2^a$ | <b>(4)</b> <sub>2</sub> |
|-----------------------------------------------------|-------------------------|-----------|-----------|-------------------------|
| $Li_1 - C_1$                                        | 2.794(5)                | 2.862(13) | 2.884(9)  | 2.67(2)                 |
| Li <sub>1</sub> -Si <sub>1</sub>                    | 3.283(5)                | 3.242(13) | 3.237(9)  | 3.30(2)                 |
| $Li_1 - C_2$                                        | 3.083(5)                | 3.235(13) | 3.191(9)  | 3.08(2)                 |
| $Li_1 - Si_2$                                       | 2.859(5)                | 2.856(13) | 2.996(9)  | 2.76(2)                 |
| $Li_2 - C_2$                                        | 2.796(5)                | 2.834(13) | 2.884(9)  | 2.679(2)                |
| $Li_2 - Si_2$                                       | 3.257(5)                | 3.231(13) | 3.237(9)  | 3.318(2)                |
| $Li_2 - C_1$                                        | 3.067(5)                | 3.112(13) | 3.191(9)  | 3.311(2)                |
| $Li_2 - Si_1$                                       | 2.880(5)                | 2.917(13) | 2.996(9)  | 2.731(2)                |
| $\phi(Li-C_{short})^{b}$                            | 2.80                    | 2.85      | 2.88      | 2.68                    |
| $\phi(\text{Li}-\text{C}_{\text{long}})^{\text{b}}$ | 3.07                    | 3.12      | 3.19      | 3.20                    |
| $\phi$ (Li–Si <sub>short</sub> ) <sup>b</sup>       | 2.87                    | 2.89      | 3.00      | 2.75                    |
| $\phi(\text{Li}-\text{Si}_{\text{long}})^{b}$       | 3.27                    | 3.24      | 3.24      | 3.31                    |
| $\phi$ (Li–C) <sup>b</sup>                          | 2.93                    | 2.99      | 3.04      | 2.94                    |
| (Li-C) <sub>deviation</sub>                         | 0.14                    | 0.14      | 0.15      | 0.26                    |
| $\phi$ (Li–Si) <sup>b</sup>                         | 3.07                    | 3.06      | 3.12      | 3.03                    |
| (Li-Si) <sub>deviation</sub>                        | 0.20                    | 0.18      | 0.12      | 0.28                    |

<sup>a</sup>Crystallographic C<sub>2</sub> symmetry.

<sup>b</sup>Average values.

Table 4

Dihedral angles (°) and  $\text{Li}_{1,2}-\text{C}_{3,4}$  'agostic' distances (Å) in the X-ray crystal structures (1)<sub>2</sub> to (4)<sub>2</sub> (Scheme 3 right)

|                                                     | <b>(1)</b> <sub>2</sub> | <b>(2)</b> <sub>2</sub> | $(3)_2^a$ | <b>(4)</b> <sub>2</sub> |
|-----------------------------------------------------|-------------------------|-------------------------|-----------|-------------------------|
| $\overline{Li_1 - N_1 - C_1 - C_3}$                 | 3.2(2)                  | 12.1(5)                 | 29.5(4)   | 11.1(8)                 |
| $Li_2 - N_2 - C_2 - C_4$                            | 9.2(2)                  | 11.2(5)                 | 29.5(4)   | 8.5(8)                  |
| $\phi(\text{Li}_{1,2}-N_{1,2}-C_{1,2}-C_{3,4})^{b}$ | 6.2                     | 11.7                    | 29.5      | 9.8                     |
| Li <sub>1</sub> -C <sub>3</sub>                     | 2.558(6)                | 2.675(14)               | 2.788(10) | 2.42(2)                 |
| $Li_2 - C_4$                                        | 2.601(6)                | 2.610(13)               | 2.788(10) | 2.42(2)                 |
| $\phi(\text{Li}_{1,2}-\text{C}_{3,4})^{b}$          | 2.58                    | 2.64                    | 2.79      | 2.42                    |

<sup>a</sup>Crystallographic C<sub>2</sub> symmetry. <sup>b</sup>Average values.



Scheme 5. Computational models for the X-ray crystal structures  $(1)_2$  to  $(4)_2$ : (5) (DMG = OMe, Fig. 5); (6) (DMG = NMe<sub>2</sub>, Fig. 6); (7) (DMG = CH<sub>2</sub>NMe<sub>2</sub>, Fig. 7) and (8) (DMG = CF<sub>3</sub>, Fig. 8).

The  $(\text{LiN})_2$  rings are all nearly symmetrical (similar Li–N distances) and are nearly planar in  $(1)_2$  to  $(4)_2$  (Table 2). The  $(\text{LiN})_2$  ring in  $(2)_2$  shows the strongest deviation from planarity (largest Li–N–Li–N torsion angle) among the four structures (Table 2).

As a consequence of the Li–DMG coordination, the alkyl and silyl substituents  $C_{(1,2)}$  and  $Si_{(1,2)}$  of the  $N_{(1,2)}$  central ring atoms bend into the plane of the central  $(LiN)_2$  rings slightly; this gives rise to shorter and longer  $Li_{(1,2)}-C_{(1,2)}$  and  $Li_{(1,2)}-Si_{(1,2)}$  distances (Scheme 3 right, Table 3). The largest deviations from average Li–C and Li–Si distances are apparent for (4)<sub>2</sub> (0.26 Å, 0.28 Å, Table 3).

Short 'agostic' [46] Li  $\cdots$  H<sub>3</sub>C contacts (Table 4) of *t*-Bu methyl groups are enabled by the 'in plane' C<sub>(1,2)</sub> bending (Scheme 3 right, Table 3) as well as favorable *t*-Bu conformations: the C<sub>(1,2)</sub>–C<sub>(3,4)</sub> bonds are nearly eclipsed with the N<sub>(1,2)</sub>–Li<sub>(1,2)</sub> arrangements. The exception, (**3**)<sub>2</sub>, exhibits the largest Li<sub>(1,2)</sub>–N<sub>(1,2)</sub>–C<sub>(1,2)</sub>–C<sub>(3,4)</sub> torsion angle of 29.5° (Table 4). Only in (**4**)<sub>2</sub>, the methyl groups of the SiMe<sub>2</sub> moieties increase the lithium



Fig. 5. B3LYP/6-31G<sup>\*</sup> optimized geometry of **5**  $[o-(C_6H_4)-OMe(-NHLi)]$  (C<sub>1</sub>). RHF/6-31G<sup>\*</sup> //RHF/6-31G<sup>\*</sup> frequency computation: NIMAG = 0. Distances in Å.

coordination up to five  $(Li \cdots H_3C(Si) = 2.66(2), 2.71(2), Fig. 4).$ 

## 3. Computational models

The parent monomeric sub-units (Scheme 5) were computed as theoretical models for the dimeric X-ray crystal structures  $(1)_2$  to  $(4)_2$  (Figs. 1–4).



 $M = Li; DMG = OMe (1), NMe_2 (2), CH_2-NMe_2 (3), CF_3 (4)$ 

The B3LYP/6-31G<sup>\*</sup> optimized geometries of **5** to **8** (DMG = OMe, NMe<sub>2</sub>, CH<sub>2</sub>NMe<sub>2</sub>, CF<sub>3</sub>) reproduce the DMG–lithium coordination in the corresponding X-ray crystal structures (Figs. 5–8, Table 1). While the 91° distortion of the chelating methoxy group in **5** out of the aryl plane is significantly more than in the experimental





Fig. 7. B3LYP/6-31G<sup>\*</sup> optimized geometry of **7** [o-(C<sub>6</sub>H<sub>4</sub>)– CH<sub>2</sub>NMe<sub>2</sub>(–NHLi)] (C<sub>1</sub>). RHF/6-31G<sup>\*</sup> //RHF/6-31G<sup>\*</sup> frequency computation: NIMAG = 0. Distances in Å.



Fig. 8. B3LYP/6-31G \* optimized geometry of **8** [o-(C<sub>6</sub>H<sub>4</sub>)– CF<sub>3</sub>(–NHLi)] (C<sub>1</sub>). RHF/6-31G \* //RHF/6-31G \* frequency computation: NIMAG = 0. Distances in Å.



Fig. 9. The X-ray crystal structure of  $[{t-BuN-SiMe_2-o-(C_6H_4)-Ome}_2Mg]$  (9), Table 5. Hydrogen atoms are omitted for clarity.



Fig. 10. The X-ray crystal structure of  $[{t-BuN-SiMe_2-o-(C_6H_4)-CH_2NMe_2}_2(OMe)_2Mg_2]$  (10), Table 5. Hydrogen atoms are omitted for clarity.

dimer (1)<sub>2</sub> (Me–O–(C–CH)<sub>aryl</sub> = 10°), the Li–N(Me<sub>2</sub>) distortion out of the aryl plane is nearly identical in the computed monomer **6** (Li–NMe<sub>2</sub>)–(C–CH)<sub>aryl</sub> = 136°) and in the X-ray crystal structure (2)<sub>2</sub> (134°). As in the experimental structure (4)<sub>2</sub>, the stronger tendency for 'end on' Li–F coordination (large Li–DMG–C angle) of the CF<sub>3</sub> group is reproduced by the computed geome-

Table 5

X-ray crystal data of the magnesium complexes (9) (Fig. 9) and (10) (Fig. 10)

|                                | (9)      |                                 | (10)     |
|--------------------------------|----------|---------------------------------|----------|
| $\overline{O_1 - Mg_1}$        | 2.084(7) | O <sub>1</sub> -Mg <sub>1</sub> | 1.971(4) |
| $O_2 - Mg_1$                   | 2.096(6) | $O_{1a} - Mg_1$                 | 1.971(3) |
| $N_1 - Mg_1$                   | 1.991(8) | $N_1 - Mg_1$                    | 1.988(4) |
| $N_2 - Mg_1$                   | 1.995(7) | $N_2 - Mg_1$                    | 2.171(4) |
| $C_{13} - Mg_1$                | 2.981(8) | $Mg_1 - Mg_{1a}$                | 2.974(3) |
| $C_{24} - Mg_1$                | 3.042(8) | $C_{11}$ – $Mg_1$               | 3.237(4) |
| $Mg_1 - N_1 - C_{10} - C_{13}$ | 6.46°    | $Mg_1 - N_1 - C_9 - C_{11}$     | 46.89°   |
| $Mg_1 - N_2 - C_{23} - C_{24}$ | 8.34°    |                                 |          |

try of 8; note that 5-7 exhibit smaller Li–DMG–C angles (Table 1).

## 4. X-ray crystal structures of magnesium derivatives

The parent chelating silylamides 1-4 (synthesized according to Scheme 2) can be used as ligands for other metalations aside from lithium, e.g., for magnesium. The [{*t*-BuN-SiMe<sub>2</sub>-*o*-(C<sub>6</sub>H<sub>4</sub>)-OMe}<sub>2</sub>Mg] (9) and [{*t*-BuN-SiMe<sub>2</sub>-*o*-(C<sub>6</sub>H<sub>4</sub>)-CH<sub>2</sub>NMe<sub>2</sub>}<sub>2</sub>(OMe)<sub>2</sub>Mg<sub>2</sub>] (10) complexes provide illustrations (Figs. 9 and 10, Table 5).

Comparisons between **9** and its lithium analogue **1** are instructive. The oxygen atoms in **9** exhibit more planar environments (Mg, Me,  $C_{aryl}$  angle sums: 357.9°  $O_{(1)}$ ; 351.8°  $O_{(2)}$ ) than the oxygen atoms in **1** (Li, Me,  $C_{aryl}$  angle sum: 345.6°). The bendings of the MeO groups out of the aryl planes are larger in **9** (Me–O–{C–CH}<sub>aryl</sub>: 34.3°,  $O_{(1)}$ ; 23.1°,  $O_{(2)}$ ) than in **1** (10.2°). The conformations of the *t*-Bu groups in **9** result in nearly eclipsed Mg–N–C–Me arrangements (6.5°, 8.3°, Table 5), similarly as in **1** (6.2°, Table 4), and afford Mg · · · Me distances of 2.98 Å and 3.04 Å (Table 5).

Bridging OMe groups in **10** enable a close Mg  $\cdots$  Mg distance (2.974(3) Å, Table 5, Fig. 10). The degree of pyramidality of the N atoms in the CH<sub>2</sub>NMe<sub>2</sub> moieties in **10** (angle sum: 327.0°) is the same as in the CH<sub>2</sub>NMe<sub>2</sub> groups in **3** (angle sum: 326.9°). The *t*-Bu conformations in **10** result in staggered Mg–N–C–Me arrangements (46.9°, Table 5) and hence, are even less eclipsed than those in **3** (29.5°, Table 4).

#### 5. Conclusions

Our approach to designing chelating silylamido ligands with readily variable 'directed metalation groups' (DMGs) [20] as donor functions led to the syntheses and X-ray crystal structure analyses of the lithium silylamides **1** to **4** with the DMGs OMe, NMe<sub>2</sub>, CH<sub>2</sub>NMe<sub>2</sub> and CF<sub>3</sub>. All solvent-free dimeric X-ray crystal structures (**1**)<sub>2</sub>–(**4**)<sub>2</sub> exhibit short Li–DMG contacts. The competition of the NMe<sub>2</sub> group between lithium coordination and aryl conjugation is apparent structurally in  $(2)_2$  and rationalizes the poor *ortho*-selectivity of the NMe<sub>2</sub> group in *ortho*-metalations [24]. The short  $Li \cdots F$  contact in (4)<sub>2</sub> emphasizes the ability of the  $CF_3$  group to coordinate centers, first investigated by Roberts and Curtin [26]. While the DMG heteroatoms in OMe, NMe<sub>2</sub>, CH<sub>2</sub>NMe<sub>2</sub> are coordinated 'side on' by the lithiums, CF<sub>3</sub> prefers 'end on' coordinated fluorine atoms. All structures exhibit short 'agostic'  $\text{Li} \cdots \text{H}_3\text{C}$ contacts with the *t*-Bu groups and for  $DMG = CF_3$  with  $H_3C(Si)$  moieties. As many different DMGs are available [20], this silvlamide concept seems attractive for further syntheses of tailor-made ligands [47]. The ability of the ligands  $[t-BuN-SiMe_2-o-(C_6H_4)-X](X = OMe_1)$  $CH_2NMe_2$ ) to chelate other ions than lithium is shown for magnesium in the X-ray crystal structures (9) and (10).

#### 5.1. Experimental section

The experiments were carried-out under an argon atmosphere by using standard Schlenk as well as needle/septum techniques. The solvents were freshly distilled from sodium/benzophenone. Dichlorodimethylsilane  $(Me_2SiCl_2)$ , *t*-butyl amine  $(t-BuNH_2)$ , anisole (PhOMe), N,N-dimethylaniline (PhNMe<sub>2</sub>), N,N-dimethylbenzylamine (PhCH2NMe<sub>2</sub>) and benzotrifuoride (PhCF<sub>3</sub>) were purchased from Aldrich. The NMR spectra were recorded on a JEOL GX spectrometer (<sup>1</sup>H: 400 MHz, <sup>13</sup>C: 100.6 MHz) and referenced to TMS. The IR spectra were determined neat between NaCl discs on a Perkin-Elmer 1420 spectrometer and elemental analyses (C, H) on a Heraeus micro automaton. The X-ray crystal data were collected with a Nonius-Mach3 diffractometer using the  $\omega/\theta$ -scan method. The structures were solved by direct methods using SHELXS 86; all data were refined by full matrix least squares on  $F^2$ using SHELXL93 (G.M. Sheldrick, Göttingen 1993).  $R1 = \Sigma |F_0 - F_c| / \Sigma F_0$  and  $wR2 = \Sigma w |(Fo_2 - Fc_2)^2| / \Sigma$  (w  $(Fo_2)^2)^{0.5}$ . All non-hydrogen atoms were refined anisotropically; the hydrogen atoms were refined independently and isotropically.

5.2. General procedure for the syntheses of aryl dimethylsilyl t-butyl amines (DMG = OMe,  $NMe_2$ ,  $CH_2NMe_2$ ,  $CF_3$ ) as well as their lithium and magnesium derivatives

A solution containing 0.07 mol of the *ortho*-metalated benzene derivative [34] was added slowly at 0°C and under vigorous stirring to a solution of 0.075 mol dichlorodimethylsilane (Me<sub>2</sub>SiCl<sub>2</sub>, 9.0 g) in 100 ml of diethyl ether. The mixture was stirred 3 h at room temperature and the LiCl precipitate was removed by filtration (glass wool). Diethyl ether and volatile components (e.g., exc. Me<sub>2</sub>SiCl<sub>2</sub>) were removed by distillation. The residue was taken up in 100 ml of diethyl ether and was slowly added to 1.6 mol *t*-butyl amine (11.8 g) in 100 ml of diethyl ether at 0°C. The mixture was stirred at room temperature over night (at least 6 h) and the *t*-BuNH<sub>3</sub>Cl precipitate was removed by filtration (glass wool). Removal of volatile components ( $Et_2O$ , *t*-BuNH<sub>2</sub>) by distillation and subsequent refined distillation yielded the silylamines. Metalation of the NH functions with *n*-BuLi (1.6 M in hexane) or MgBu<sub>2</sub> (1.0 M in heptane) yielded the lithium or magnesium complexes. Traces of methanol led to the OMe incorporation in **10**. Single crystals were grown from cooled hexane or hexane/heptane solutions.

*t*-BuNH–SiMe<sub>2</sub>–*o*-(C<sub>6</sub>H<sub>4</sub>)–OMe, 92% yield, b.p.: 93°C/1 mbar; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.47 (d), 7.32 (t), 6.93 (t), 6.78 (d), (aryl-*H*), 3.76 (s, O–*CH*<sub>3</sub>), 1.12 (s, *t*-Bu–*H*), 0.35 (s, Si–*CH*<sub>3</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$ <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  164.08, 135.38, 130.56, 128.99, 120.31, 109.55 (aryl-*C*), 54.74 (O–*CH*<sub>3</sub>), 49.57 (*t*-Bu–*C*), 33.58 (*t*-Bu–*CH*<sub>3</sub>), 1.57 (Si–*CH*<sub>3</sub>); IR (neat, cm<sup>-1</sup>) 3410 ( $\nu$  N–H), 3080 ( $\nu$  C<sub>aryl</sub>-H), 2980–2840 ( $\nu$ C<sub>alkyl</sub>-H); IR (neat, cm<sup>-1</sup>) 3410 ( $\nu$  N–H), 3080 ( $\nu$ C<sub>aryl</sub>-H), 2980–2840 ( $\nu$  C<sub>alkyl</sub>-H).

(1)<sub>2</sub>: Anal. (C<sub>13</sub>H<sub>22</sub>Li<sub>1</sub>N<sub>1</sub>O<sub>1</sub>Si<sub>1</sub>) calcd: C: 64.2%, H: 9.1%, found: C: 63.9%, H: 9.2%. X-ray crystal data for (1)<sub>2</sub>: C<sub>13</sub>H<sub>22</sub>Li<sub>1</sub>N<sub>1</sub>O<sub>1</sub>Si<sub>1</sub>, M<sub>r</sub> = 243.35; monoclinic; space group P2(1)/n; *a* = 9.5250(10) Å, *b* = 18.968(2) Å, *c* = 16.8660(10) Å,  $\beta$  = 101.670(10)°; *V* = 2984.2(6) Å3; D<sub>calc</sub> = 1.083 Mgm<sup>-3</sup>; *Z* = 8; *F*(000) = 1056; Mo-K<sub>a</sub> ( $\lambda$  = 0.71073 Å); *T* = 293 (2) K; crystal size: 0.40 × 0.40 × 0.30 mm; 4° < 2 $\Theta$  < 48°; reflections collected: 4964, independent: 4655, I > 2 $\sigma$ (I): 3195 data, refined parameters: 308. The final R-values were: *R*1 = 0.0546 (I > 2 $\sigma$ (I)) and *wR*2 = 0.1393 (all data). GOF = 1.078; largest peak (0.203 eÅ<sup>-3</sup>) and hole (-0.203 eÅ<sup>-3</sup>).

**9**: Anal. ( $C_{26}H_{44}Mg_1N_2O_2Si_2$ ) calcd: C: 62.8%, H: 8.9%, found: C: 62.3%, H: 9.1%. X-ray crystal data for **9**:  $C_{26}H_{44}Mg_1N_2O_2Si_2$ ,  $M_r = 497.12$ ; monoclinic; space group C2/*c*; a = 39.075(7) Å, b = 8.903(5) Å, c = 16.629(7) Å,  $\beta = 99.81(2)^\circ$ ; V = 5700(4) Å<sup>3</sup>;  $D_{calc}$  $= 1.159 Mgm^{-3}$ ; Z = 8; F(000) = 2160; Mo-K<sub> $\alpha$ </sub> ( $\lambda =$ 0.71073 Å); T = 173 (2) K; crystal size:  $0.35 \times 0.30 \times$ 0.30 mm;  $8^\circ < 2\Theta < 52^\circ$ ; reflections collected: 5848, independent: 5761, I  $> 2\sigma$ (I): 1687, refined parameters: 298. The final R-values were: R1 = 0.1089 (I  $> 2\sigma$ (I)) and wR2 = 0.2503 (all data). GOF = 0.965; largest peak (0.480 eÅ<sup>-3</sup>) and hole (-0.471 eÅ<sup>-3</sup>).

*t*-BuNH–SiMe<sub>2</sub>–o-(C<sub>6</sub>H<sub>4</sub>)–NMe<sub>2</sub>, 82% yield, b.p.: 75°C/1 – 0.5 mbar; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.68 (d), 7.53 (t), 7.13 (t), 6.98 (d), (aryl-*H*), 2.66 (s, N–CH<sub>3</sub>), 1.17 (s, *t*-Bu–*H*), 0.39 (s, Si–CH<sub>3</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  160.35, 137.58, 135.61, 129.90, 124.04, 120.58 (aryl-*C*), 49.30 (*t*-Bu–*C*), 46.54 (N–CH<sub>3</sub>), 33.83 (*t*-Bu–*C*H<sub>3</sub>), 2.85 (Si–CH<sub>3</sub>); IR (neat, cm<sup>-1</sup>) 3400, 3300 ( $\nu$  N–H), 3060 ( $\nu$  C<sub>arvl</sub>-H), 2980–2780 ( $\nu$  C<sub>alkvl</sub>-H).

(2)<sub>2</sub>: Anal. ( $C_{14}H_{25}Li_1N_2Si_1$ ) calcd: C: 65.6%, H: 9.8%, found: C: 64.8%, H: 9.9%. X-ray crystal data for (2)<sub>2</sub>:  $C_{14}H_{25}Li_1N_2Si_1$ ,  $M_r = 256.39$ ; monoclinic; space

group P2(1)/n; a = 10.433(2) Å, b = 15.8158(10) Å, c = 19.198(2) Å,  $\beta = 92.26(3)^\circ$ ; V = 3165.5(6) Å<sup>3</sup>; D<sub>calc</sub> = 1.076 Mgm<sup>-3</sup>; Z = 8; F(000) = 1120; Mo-K<sub> $\alpha$ </sub> ( $\lambda = 0.71073$  Å); T = 293(2) K; crystal size:  $0.30 \times 0.20 \times 0.20$  mm;  $4^\circ < 2\Theta < 48^\circ$ ; reflections collected: 5099, independent: 4940, I >  $2\sigma$ (I): 2721, refined parameters: 326. The final R-values were: R1 = 0.0905 (I >  $2\sigma$ (I)) and wR2 = 0.3138 (all data). GOF = 0.938; largest peak (0.261 eÅ<sup>-3</sup>) and hole (-0.204 eÅ<sup>-3</sup>).

*t*-BuNH–SiMe<sub>2</sub>–*o*-( $C_6H_4$ )–CH<sub>2</sub>NMe<sub>2</sub>, 95% yield, b.p.: 87°C/1 – 0.5 mbar; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.59 (d), 7.38 (d), 7.29 (t), 7.21 (t), (aryl-*H*), 3.61 (s, C*H*<sub>2</sub>), 2.22 (s, N–C*H*<sub>3</sub>), 1.14 (s, *t*-Bu–*H*), 0.41 (s, Si–C*H*<sub>3</sub>); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  144.64, 139.78, 134.83, 129.47, 128.76, 126.10 (aryl-C), 64.27 (CH<sub>2</sub>) 49.53 (*t*-Bu–C), 45.34 (N–CH<sub>3</sub>), 33.77 (*t*-Bu–CH<sub>3</sub>), 2.97 (Si–CH<sub>3</sub>); IR (neat, cm<sup>-1</sup>) 3400, 3260 ( $\nu$  N–H), 3060 ( $\nu$  C<sub>aryl</sub>-H), 2980–2720 ( $\nu$  C<sub>alkyl</sub>-H).

(3)<sub>2</sub>: Anal. ( $C_{30}H_{54}Li_2N_4Si_2$ ) calcd: C: 66.6%, H: 10.1%, found: C: 65.9%, H: 10.4%. X-ray crystal data for (3)<sub>2</sub>:  $C_{30}H_{54}Li_2N_4Si_2$ ,  $M_r = 540.83$ ; monoclinic; space group C2/*c*; *a* = 19.513(3) Å; *b* = 9.909(2) Å; *c* = 17.668(2) Å,  $\beta$  = 101.849(11)°; *V* = 3343.2(8) Å<sup>3</sup>;  $D_{calc} = 1.075 \text{ Mgm}^{-3}$ ; *Z* = 4; *F*(000) = 1184; Mo-K<sub>α</sub> ( $\lambda$  = 0.71073 Å); *T* = 298(2) K; crystal size: 0.30 × 0.30 × 0.30 mm; 6° < 2 $\Theta$  < 48°; reflections collected: 2700, independent: 2621, I > 2 $\sigma$ (I): 1667, refined parameters: 173. The final R-values were: *R*1 = 0.0837 (I > 2 $\sigma$ (I)) and *wR*2 = 0.2139 (all data). GOF = 1.152; largest peak (0.330 eÅ<sup>-3</sup>) and hole (-0.320 eÅ<sup>-3</sup>).

**10**: Anal. (C<sub>16</sub>H<sub>30</sub>Mg<sub>1</sub>N<sub>2</sub>O<sub>1</sub>Si<sub>1</sub>) calcd: C: 60.3%, H: 9.5%, found: C: 59.8%, H: 10.0%. X-ray crystal data for **10**: C<sub>16</sub>H<sub>30</sub>Mg<sub>1</sub>N<sub>2</sub>O<sub>1</sub>Si<sub>1</sub>, M<sub>r</sub> = 318.82; monoclinic; space group P2(1)/n; *a* = 10.188(2) Å, *b* = 14.373(3) Å, *c* = 13.882(3) Å, *β* = 110.16(3)°; *V* = 1908.2(7) Å<sup>3</sup>; D<sub>calc</sub> = 1.110 Mgm<sup>-3</sup>; *Z* = 4; *F*(000) = 696; Mo-K<sub>α</sub> ( $\lambda$  = 0.71073 Å); *T* = 223(2) K; crystal size: 0.40 × 0.40 × 0.30 mm; 6° < 2 $\Theta$  < 48°; reflections collected: 2984, independent: 2984, I > 2 $\sigma$ (I): 1583, refined parameters: 190. The final R-values were: *R*1 = 0.0689 (I > 2 $\sigma$ (I)) and *wR*2 = 0.1868 (all data). GOF = 1.024; largest peak (0.550 eÅ<sup>-3</sup>) and hole (-0.286 eÅ<sup>-3</sup>).

*t*-BuNH–SiMe<sub>2</sub>–o-(C<sub>6</sub>H<sub>4</sub>)–CF<sub>3</sub>, 94% yield, b.p.: 71°C/1.5 mbar; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.91, 7.65, 7.47, 7.42 (aryl-*H*), 1.12 (s, *t*-Bu–*H*), 0.43 (s, Si–CH<sub>3</sub>); 140.05, 136.54, 135.68, 130.40, 128.72, 120.31 (aryl– *C*), 134.50 (q, *CF*<sub>3</sub>), 49.65 (*t*-Bu–*C*), 33.44 (*t*-Bu– *C*H<sub>3</sub>), 1.94 (Si–*C*H<sub>3</sub>); IR (neat, cm<sup>-1</sup>) 3600 ( $\nu$  N–H), 3030 ( $\nu$  C<sub>arvl</sub>-H), 2960–2840 ( $\nu$  C<sub>alkvl</sub>-H).

(4)<sub>2</sub>: Anal. (C<sub>26</sub>H<sub>38</sub>F<sub>6</sub>Li<sub>2</sub>N<sub>2</sub>Si<sub>2</sub>) calcd: C: 55.5%, H: 6.8%, found: C: 54.8%, H: 7.2%. X-ray crystal data for (4)<sub>2</sub>: C<sub>26</sub>H<sub>38</sub>F<sub>6</sub>Li<sub>2</sub>N<sub>2</sub>Si<sub>2</sub>, M<sub>r</sub> = 562.64; triclinic; space group P-1; a = 8.719(2) Å, b = 13.067(3) Å, c =13.198(3) Å,  $\alpha = 94.66(3)^{\circ}$ ,  $\beta = 105.58(3)^{\circ}$ ,  $\gamma =$ 92.15(3)°; V = 1440.8(5) Å<sup>3</sup>; D<sub>calc</sub> = 1.297 Mgm<sup>-3</sup>; Z = 2; F(000) = 592; Mo-K<sub> $\alpha$ </sub> ( $\lambda = 0.71073$  Å); T = 173(2) K; crystal size:  $0.30 \times 0.20 \times 0.20$  mm; 4° < 2 $\Theta$  < 50°; reflections collected: 5096, independent: 5096, I > 2 $\sigma$ (I): 2366, refined parameters: 343. The final R-values were: *R*1 = 0.1312 (I > 2 $\sigma$ (I)) and *wR*2 = 0.4598 (all data). GOF = 0.990; largest peak (1.022 eÅ<sup>-3</sup>) and hole (-1.161 eÅ<sup>-3</sup>).

# 5.3. Computational methods

The theoretical structures were optimized using the gradient techniques implemented in GAUSSIAN 94 [48] with Becke's three parameter hybrid functional incorporating the Lee–Yang–Parr correlation functional (Becke3LYP) [49,50]. The 6-31G\* basis set was used. The characters of the stationary points were obtained from analytical RHF/6-31G\*//RHF/6-31G\* frequency calculations.

#### Acknowledgements

This work was supported by the Fonds der Chemischen Industrie (also through a scholarship to B.G.), the Stiftung Volkswagenwerk, and the Deutsche Forschungs gemeinschaft.

## References

- M. Fieser, Reagents for Organic Synthesis, Vol. 15, Wiley, New York, 1990.
- [2] B.J. Wakefield, The Chemistry of Organolithium Compounds, Pergamon, Oxford, 1974.
- [3] F.E. Romesberg, D.B. Collum, J. Am. Chem. Soc. 117 (1995) 2166.
- [4] B.L. Lucht, D.B. Collum, J. Am. Chem. Soc. 117 (1995) 9863.
- [5] M. Majewski, J. Organomet. Chem. 470 (1994) 1.
- [6] L. Ruwisch, L. Klingebiel, S. Rudolph, R. Herbst-Irmer, M. Noltemeyer, Chem. Ber. 129 (1996) 823.
- [7] K. Aoyagi, P.K. Gantzel, K. Kalai, T.D. Tilley, Organometallics 15 (1996) 923.
- [8] A.-M. Sapse, P.v.R. Schleyer (Eds.), Lithium Chemistry, Wiley, New York, 1995.
- [9] C. Lambert, P.v.R. Schleyer, Angew. Chem. Int. Ed. Engl. 33 (1994) 1129.
- [10] C. Lambert, P.v.R. Schleyer, Angew. Chem. 106 (1994) 1187.
- [11] C. Lambert, P.v.R. Schleyer, Meth. Org. Chem. (Houben-Weyl), 4th Ed., 1952-, Bd. E19d, 1993, p. 1.
- [12] K. Gregory, P.v.R. Schleyer, R. Snaith, Adv. Inorg. Chem. 37 (1991) 47.
- [13] R.E. Mulvey, Chem. Soc. Rev. 20 (1991) 167.
- [14] M. Veith, S. Müller-Becker, A. Lengert, N. Engel, Oranosilicon Chem., N. Auner, J. Weis (Eds.), VCH, Weinheim, 1994.
- [15] B. Goldfuss, P.v.R. Schleyer, F. Hampel, J. Am. Chem. Soc. 118 (1996) 12183.
- [16] B. Goldfuss, P.v.R. Schleyer, F. Hampel, J. Am. Chem. Soc. 119 (1997) 1072.
- [17] K.G. Caulton, L.G. Hubert-Pfalzgraf, Chem. Rev. 90 (1990) 969.

- [18] D.C. Bradley, Chem. Rev. 89 (1989) 1317.
- [19] H. Yang, M. Alvarez-Gressier, N. Lugan, R. Mathieu, Organometallics 16 (1997) 1401, and references therein.
- [20] V. Snieckus, Chem. Rev. 90 (1990) 879.
- [21] H. Gilman, R.L. Bebb, J. Am. Chem. Soc. 61 (1939) 109.
- [22] G. Wittig, G. Fuhrmann, Chem. Ber. 73 (1940) 1197.
- [23] D.W. Slocum, C.A. Jennings, J. Org. Chem. 41 (1976) 3653.
- [24] H.W. Gschwend, H.R. Rodriguez, Org. Reakt. 26 (1979) 1.
- [25] N.S. Narasimhan, R.S. Mali, Synthesis (1983) 957.
- [26] J.D. Roberts, D.Y. Curtin, J. Am. Chem. Soc. 68 (1946) 1658.
- [27] P. Beak, A.I. Meyers, Acc. Chem. Res. 19 (1986) 356.
- [28] N.J.R.v.E. Hommes, P.v.R. Schleyer, Angew. Chem. Int. Ed. Engl. 31 (1992) 755.
- [29] N.J.R.v.E. Hommes, P.v.R. Schleyer, Angew. Chem. 104 (1992) 768.
- [30] N.J.R.v.E. Hommes, P.v.R. Schleyer, Tetrahedron 50 (1994) 5903.
- [31] T. Kremer, M. Junge, P.v.R. Schleyer, Organometallics 15 (1996) 3345.
- [32] G.A. Suner, P.M. Deyá, J.M. Saá, J. Am. Chem. Soc. 112 (1990) 1467.
- [33] J. Morey, A. Acosta, P.M. Deyá, G. Suner, J.M. Saá, J. Org. Chem. 55 (1990) 3902.
- [34] L. Brandsma, H. Verkruijsse, Preparative Polar Organometalic Chemistry, Springer, Berlin, 1987.
- [35] N.S. Narasimhan, R.S. Mali, Top. Curr. Chem. 138 (1987) 63.
- [36] F. Pauer, P.P. Power, Lithium chemistry, in: A.-M. Sapse, P.v.R. Schleyer (Eds.), Wiley, Chichester, 1995, Chap. 9, p. 295.
- [37] S. Harder, J. Boersma, L. Brandsma, J.A. Kanters, J. Organomet. Chem. 339 (1988) 7.
- [38] S. Harder, J. Boersma, L. Brandsma, G.P.M.v. Mier, J.A. Kanters, J. Organomet. Chem. 364 (1989) 1.
- [39] S. Harder, J. Boersma, L. Brandsma, J.A. Kanters, A.J.M. Duisenberg, J.H.v. Lenthe, Organometallics 10 (1991) 1623.
- [40] S. Harder, P.F. Ekhart, L. Brandsma, J.A. Kanters, A.J.M. Duisenberg, P.v.R. Schleyer, Organometallics 11 (1992) 2623.
- [41] The crystal structure of 2,6-bis(dimethylamino)phenyllithium: S. Harder, J. Boersma, L. Brandsam, J.A. Kanters, W. Bauer, P.v.R. Schleyer, Organometallics, 8 (1989) 1696.
- [42] J.T.B.H. Jastrzebski, G.v. Koten, M. Konijn, C.H. Stam, J. Am. Chem. Soc. 104 (1982) 5490.
- [43] D. Stalke, N. Keweloh, U. Klingebiel, M. Noltemeyer, G.M. Sheldrick, Z. Naturforsch. 42b (1987) 1237.
- [44] D. Stalke, U. Klingebiel, G.M. Sheldrick, J. Organomet. Chem. 344 (1988) 37.
- [45] R. Snaith, D.S. Wright, Lithium Chemistry, A.-M. Sapse, P.v.R. Schlever (Eds.), Wiley, Chichester, 1995, Chap. 8, p. 227.
- [46] M. Bookhart, M.L.H. Green, J. Organomet. Chem. 250 (1983) 395.
- [47] P. Hofmann, Organometallics in Organic Synthesis, in: A.d. Meijere, H.t. Dieck (Eds.), Springer, Berlin, 1987, p. 1.
- [48] Gaussian 94, Revision C.3, M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople, Gaussian, Pittsburgh PA, 1995.
- [49] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
- [50] C. Lee, W. Yang, Phys. Rev. B37 (1988) 785.